home *** CD-ROM | disk | FTP | other *** search
/ Tricks of the Mac Game Programming Gurus / TricksOfTheMacGameProgrammingGurus.iso / More Source / C⁄C++ / Peter's Final Project / jpeg-5b / jccoefct.c < prev    next >
Text File  |  1995-03-10  |  16KB  |  444 lines

  1. /*
  2.  * jccoefct.c
  3.  *
  4.  * Copyright (C) 1994-1995, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains the coefficient buffer controller for compression.
  9.  * This controller is the top level of the JPEG compressor proper.
  10.  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
  11.  */
  12.  
  13. #define JPEG_INTERNALS
  14. #include "jinclude.h"
  15. #include "jpeglib.h"
  16.  
  17.  
  18. /* We use a full-image coefficient buffer when doing Huffman optimization,
  19.  * and also for writing multiple-scan JPEG files.  In all cases, the DCT
  20.  * step is run during the first pass, and subsequent passes need only read
  21.  * the buffered coefficients.
  22.  */
  23. #ifdef ENTROPY_OPT_SUPPORTED
  24. #define FULL_COEF_BUFFER_SUPPORTED
  25. #else
  26. #ifdef C_MULTISCAN_FILES_SUPPORTED
  27. #define FULL_COEF_BUFFER_SUPPORTED
  28. #endif
  29. #endif
  30.  
  31.  
  32. /* Private buffer controller object */
  33.  
  34. typedef struct {
  35.   struct jpeg_c_coef_controller pub; /* public fields */
  36.  
  37.   JDIMENSION iMCU_row_num;    /* iMCU row # within image */
  38.   JDIMENSION mcu_ctr;        /* counts MCUs processed in current row */
  39.   int MCU_vert_offset;        /* counts MCU rows within iMCU row */
  40.   int MCU_rows_per_iMCU_row;    /* number of such rows needed */
  41.  
  42.   /* For single-pass compression, it's sufficient to buffer just one MCU
  43.    * (although this may prove a bit slow in practice).  We allocate a
  44.    * workspace of MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
  45.    * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
  46.    * it's not really very big; this is to keep the module interfaces unchanged
  47.    * when a large coefficient buffer is necessary.)
  48.    * In multi-pass modes, this array points to the current MCU's blocks
  49.    * within the virtual arrays.
  50.    */
  51.   JBLOCKROW MCU_buffer[MAX_BLOCKS_IN_MCU];
  52.  
  53.   /* In multi-pass modes, we need a virtual block array for each component. */
  54.   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
  55. } my_coef_controller;
  56.  
  57. typedef my_coef_controller * my_coef_ptr;
  58.  
  59.  
  60. /* Forward declarations */
  61. METHODDEF boolean compress_data
  62.     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
  63. #ifdef FULL_COEF_BUFFER_SUPPORTED
  64. METHODDEF boolean compress_first_pass
  65.     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
  66. METHODDEF boolean compress_output
  67.     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
  68. #endif
  69.  
  70.  
  71. LOCAL void
  72. start_iMCU_row (j_compress_ptr cinfo)
  73. /* Reset within-iMCU-row counters for a new row */
  74. {
  75.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  76.  
  77.   /* In an interleaved scan, an MCU row is the same as an iMCU row.
  78.    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
  79.    * But at the bottom of the image, process only what's left.
  80.    */
  81.   if (cinfo->comps_in_scan > 1) {
  82.     coef->MCU_rows_per_iMCU_row = 1;
  83.   } else {
  84.     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
  85.       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
  86.     else
  87.       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
  88.   }
  89.  
  90.   coef->mcu_ctr = 0;
  91.   coef->MCU_vert_offset = 0;
  92. }
  93.  
  94.  
  95. /*
  96.  * Initialize for a processing pass.
  97.  */
  98.  
  99. METHODDEF void
  100. start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
  101. {
  102.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  103.  
  104.   coef->iMCU_row_num = 0;
  105.   start_iMCU_row(cinfo);
  106.  
  107.   switch (pass_mode) {
  108.   case JBUF_PASS_THRU:
  109.     if (coef->whole_image[0] != NULL)
  110.       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  111.     coef->pub.compress_data = compress_data;
  112.     break;
  113. #ifdef FULL_COEF_BUFFER_SUPPORTED
  114.   case JBUF_SAVE_AND_PASS:
  115.     if (coef->whole_image[0] == NULL)
  116.       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  117.     coef->pub.compress_data = compress_first_pass;
  118.     break;
  119.   case JBUF_CRANK_DEST:
  120.     if (coef->whole_image[0] == NULL)
  121.       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  122.     coef->pub.compress_data = compress_output;
  123.     break;
  124. #endif
  125.   default:
  126.     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  127.     break;
  128.   }
  129. }
  130.  
  131.  
  132. /*
  133.  * Process some data in the single-pass case.
  134.  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
  135.  * per call, ie, v_samp_factor block rows for each component in the image.
  136.  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
  137.  *
  138.  * NB: input_buf contains a plane for each component in image.
  139.  * For single pass, this is the same as the components in the scan.
  140.  */
  141.  
  142. METHODDEF boolean
  143. compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
  144. {
  145.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  146.   JDIMENSION MCU_col_num;    /* index of current MCU within row */
  147.   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
  148.   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  149.   int blkn, bi, ci, yindex, yoffset, blockcnt;
  150.   JDIMENSION ypos, xpos;
  151.   jpeg_component_info *compptr;
  152.  
  153.   /* Loop to write as much as one whole iMCU row */
  154.   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
  155.        yoffset++) {
  156.     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
  157.      MCU_col_num++) {
  158.       /* Determine where data comes from in input_buf and do the DCT thing.
  159.        * Each call on forward_DCT processes a horizontal row of DCT blocks
  160.        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
  161.        * sequentially.  Dummy blocks at the right or bottom edge are filled in
  162.        * specially.  The data in them does not matter for image reconstruction,
  163.        * so we fill them with values that will encode to the smallest amount of
  164.        * data, viz: all zeroes in the AC entries, DC entries equal to previous
  165.        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
  166.        */
  167.       blkn = 0;
  168.       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
  169.     compptr = cinfo->cur_comp_info[ci];
  170.     blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
  171.                         : compptr->last_col_width;
  172.     xpos = MCU_col_num * compptr->MCU_sample_width;
  173.     ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
  174.     for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
  175.       if (coef->iMCU_row_num < last_iMCU_row ||
  176.           yoffset+yindex < compptr->last_row_height) {
  177.         (*cinfo->fdct->forward_DCT) (cinfo, compptr,
  178.                      input_buf[ci], coef->MCU_buffer[blkn],
  179.                      ypos, xpos, (JDIMENSION) blockcnt);
  180.         if (blockcnt < compptr->MCU_width) {
  181.           /* Create some dummy blocks at the right edge of the image. */
  182.           jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
  183.             (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
  184.           for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
  185.         coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
  186.           }
  187.         }
  188.       } else {
  189.         /* Create a row of dummy blocks at the bottom of the image. */
  190.         jzero_far((void FAR *) coef->MCU_buffer[blkn],
  191.               compptr->MCU_width * SIZEOF(JBLOCK));
  192.         for (bi = 0; bi < compptr->MCU_width; bi++) {
  193.           coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
  194.         }
  195.       }
  196.       blkn += compptr->MCU_width;
  197.       ypos += DCTSIZE;
  198.     }
  199.       }
  200.       /* Try to write the MCU.  In event of a suspension failure, we will
  201.        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
  202.        */
  203.       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
  204.     /* Suspension forced; update state counters and exit */
  205.     coef->MCU_vert_offset = yoffset;
  206.     coef->mcu_ctr = MCU_col_num;
  207.     return FALSE;
  208.       }
  209.     }
  210.     /* Completed an MCU row, but perhaps not an iMCU row */
  211.     coef->mcu_ctr = 0;
  212.   }
  213.   /* Completed the iMCU row, advance counters for next one */
  214.   coef->iMCU_row_num++;
  215.   start_iMCU_row(cinfo);
  216.   return TRUE;
  217. }
  218.  
  219.  
  220. #ifdef FULL_COEF_BUFFER_SUPPORTED
  221.  
  222. /*
  223.  * Process some data in the first pass of a multi-pass case.
  224.  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
  225.  * per call, ie, v_samp_factor block rows for each component in the image.
  226.  * This amount of data is read from the source buffer, DCT'd and quantized,
  227.  * and saved into the virtual arrays.  We also generate suitable dummy blocks
  228.  * as needed at the right and lower edges.  (The dummy blocks are constructed
  229.  * in the virtual arrays, which have been padded appropriately.)  This makes
  230.  * it possible for subsequent passes not to worry about real vs. dummy blocks.
  231.  *
  232.  * We must also emit the data to the entropy encoder.  This is conveniently
  233.  * done by calling compress_output() after we've loaded the current strip
  234.  * of the virtual arrays.
  235.  *
  236.  * NB: input_buf contains a plane for each component in image.  All
  237.  * components are DCT'd and loaded into the virtual arrays in this pass.
  238.  * However, it may be that only a subset of the components are emitted to
  239.  * the entropy encoder during this first pass; be careful about looking
  240.  * at the scan-dependent variables (MCU dimensions, etc).
  241.  */
  242.  
  243. METHODDEF boolean
  244. compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
  245. {
  246.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  247.   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  248.   JDIMENSION blocks_across, MCUs_across, MCUindex;
  249.   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
  250.   JCOEF lastDC;
  251.   jpeg_component_info *compptr;
  252.   JBLOCKARRAY buffer;
  253.   JBLOCKROW thisblockrow, lastblockrow;
  254.  
  255.   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  256.        ci++, compptr++) {
  257.     /* Align the virtual buffer for this component. */
  258.     buffer = (*cinfo->mem->access_virt_barray)
  259.       ((j_common_ptr) cinfo, coef->whole_image[ci],
  260.        coef->iMCU_row_num * compptr->v_samp_factor, TRUE);
  261.     /* Count non-dummy DCT block rows in this iMCU row. */
  262.     if (coef->iMCU_row_num < last_iMCU_row)
  263.       block_rows = compptr->v_samp_factor;
  264.     else {
  265.       /* NB: can't use last_row_height here, since may not be set! */
  266.       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
  267.       if (block_rows == 0) block_rows = compptr->v_samp_factor;
  268.     }
  269.     blocks_across = compptr->width_in_blocks;
  270.     h_samp_factor = compptr->h_samp_factor;
  271.     /* Count number of dummy blocks to be added at the right margin. */
  272.     ndummy = (int) (blocks_across % h_samp_factor);
  273.     if (ndummy > 0)
  274.       ndummy = h_samp_factor - ndummy;
  275.     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
  276.      * on forward_DCT processes a complete horizontal row of DCT blocks.
  277.      */
  278.     for (block_row = 0; block_row < block_rows; block_row++) {
  279.       thisblockrow = buffer[block_row];
  280.       (*cinfo->fdct->forward_DCT) (cinfo, compptr,
  281.                    input_buf[ci], thisblockrow,
  282.                    (JDIMENSION) (block_row * DCTSIZE),
  283.                    (JDIMENSION) 0, blocks_across);
  284.       if (ndummy > 0) {
  285.     /* Create dummy blocks at the right edge of the image. */
  286.     thisblockrow += blocks_across; /* => first dummy block */
  287.     jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
  288.     lastDC = thisblockrow[-1][0];
  289.     for (bi = 0; bi < ndummy; bi++) {
  290.       thisblockrow[bi][0] = lastDC;
  291.     }
  292.       }
  293.     }
  294.     /* If at end of image, create dummy block rows as needed.
  295.      * The tricky part here is that within each MCU, we want the DC values
  296.      * of the dummy blocks to match the last real block's DC value.
  297.      * This squeezes a few more bytes out of the resulting file...
  298.      */
  299.     if (coef->iMCU_row_num == last_iMCU_row) {
  300.       blocks_across += ndummy;    /* include lower right corner */
  301.       MCUs_across = blocks_across / h_samp_factor;
  302.       for (block_row = block_rows; block_row < compptr->v_samp_factor;
  303.        block_row++) {
  304.     thisblockrow = buffer[block_row];
  305.     lastblockrow = buffer[block_row-1];
  306.     jzero_far((void FAR *) thisblockrow,
  307.           (size_t) (blocks_across * SIZEOF(JBLOCK)));
  308.     for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
  309.       lastDC = lastblockrow[h_samp_factor-1][0];
  310.       for (bi = 0; bi < h_samp_factor; bi++) {
  311.         thisblockrow[bi][0] = lastDC;
  312.       }
  313.       thisblockrow += h_samp_factor; /* advance to next MCU in row */
  314.       lastblockrow += h_samp_factor;
  315.     }
  316.       }
  317.     }
  318.   }
  319.   /* NB: compress_output will increment iMCU_row_num if successful.
  320.    * A suspension return will result in redoing all the work above next time.
  321.    */
  322.  
  323.   /* Emit data to the entropy encoder, sharing code with subsequent passes */
  324.   return compress_output(cinfo, input_buf);
  325. }
  326.  
  327.  
  328. /*
  329.  * Process some data in subsequent passes of a multi-pass case.
  330.  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
  331.  * per call, ie, v_samp_factor block rows for each component in the scan.
  332.  * The data is obtained from the virtual arrays and fed to the entropy coder.
  333.  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
  334.  *
  335.  * NB: input_buf is ignored; it is likely to be a NULL pointer.
  336.  */
  337.  
  338. METHODDEF boolean
  339. compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
  340. {
  341.   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  342.   JDIMENSION MCU_col_num;    /* index of current MCU within row */
  343.   int blkn, ci, xindex, yindex, yoffset;
  344.   JDIMENSION start_col;
  345.   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
  346.   JBLOCKROW buffer_ptr;
  347.   jpeg_component_info *compptr;
  348.  
  349.   /* Align the virtual buffers for the components used in this scan.
  350.    * NB: during first pass, this is safe only because the buffers will
  351.    * already be aligned properly, so jmemmgr.c won't need to do any I/O.
  352.    */
  353.   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
  354.     compptr = cinfo->cur_comp_info[ci];
  355.     buffer[ci] = (*cinfo->mem->access_virt_barray)
  356.       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
  357.        coef->iMCU_row_num * compptr->v_samp_factor, FALSE);
  358.   }
  359.  
  360.   /* Loop to process one whole iMCU row */
  361.   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
  362.        yoffset++) {
  363.     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
  364.      MCU_col_num++) {
  365.       /* Construct list of pointers to DCT blocks belonging to this MCU */
  366.       blkn = 0;            /* index of current DCT block within MCU */
  367.       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
  368.     compptr = cinfo->cur_comp_info[ci];
  369.     start_col = MCU_col_num * compptr->MCU_width;
  370.     for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
  371.       buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
  372.       for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
  373.         coef->MCU_buffer[blkn++] = buffer_ptr++;
  374.       }
  375.     }
  376.       }
  377.       /* Try to write the MCU. */
  378.       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
  379.     /* Suspension forced; update state counters and exit */
  380.     coef->MCU_vert_offset = yoffset;
  381.     coef->mcu_ctr = MCU_col_num;
  382.     return FALSE;
  383.       }
  384.     }
  385.     /* Completed an MCU row, but perhaps not an iMCU row */
  386.     coef->mcu_ctr = 0;
  387.   }
  388.   /* Completed the iMCU row, advance counters for next one */
  389.   coef->iMCU_row_num++;
  390.   start_iMCU_row(cinfo);
  391.   return TRUE;
  392. }
  393.  
  394. #endif /* FULL_COEF_BUFFER_SUPPORTED */
  395.  
  396.  
  397. /*
  398.  * Initialize coefficient buffer controller.
  399.  */
  400.  
  401. GLOBAL void
  402. jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
  403. {
  404.   my_coef_ptr coef;
  405.   int ci, i;
  406.   jpeg_component_info *compptr;
  407.   JBLOCKROW buffer;
  408.  
  409.   coef = (my_coef_ptr)
  410.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  411.                 SIZEOF(my_coef_controller));
  412.   cinfo->coef = (struct jpeg_c_coef_controller *) coef;
  413.   coef->pub.start_pass = start_pass_coef;
  414.  
  415.   /* Create the coefficient buffer. */
  416.   if (need_full_buffer) {
  417. #ifdef FULL_COEF_BUFFER_SUPPORTED
  418.     /* Allocate a full-image virtual array for each component, */
  419.     /* padded to a multiple of samp_factor DCT blocks in each direction. */
  420.     /* Note memmgr implicitly pads the vertical direction. */
  421.     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  422.      ci++, compptr++) {
  423.       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
  424.     ((j_common_ptr) cinfo, JPOOL_IMAGE,
  425.      (JDIMENSION) jround_up((long) compptr->width_in_blocks,
  426.                 (long) compptr->h_samp_factor),
  427.      compptr->height_in_blocks,
  428.      (JDIMENSION) compptr->v_samp_factor);
  429.     }
  430. #else
  431.     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  432. #endif
  433.   } else {
  434.     /* We only need a single-MCU buffer. */
  435.     buffer = (JBLOCKROW)
  436.       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  437.                   MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
  438.     for (i = 0; i < MAX_BLOCKS_IN_MCU; i++) {
  439.       coef->MCU_buffer[i] = buffer + i;
  440.     }
  441.     coef->whole_image[0] = NULL; /* flag for no virtual arrays */
  442.   }
  443. }
  444.